The sensitivity of stratocumulus-capped mixed layers to cloud droplet concentration: do LES and mixed-layer models agree?
نویسندگان
چکیده
The sensitivity of a stratocumulus-capped mixed layer to a change in cloud droplet concentration is evaluated with a large-eddy simulation (LES) and a mixed layer model (MLM). The strength of the second aerosol indirect effect simulated by the two model types agrees within 50% for cases in which the LES-simulated boundary layer remains well mixed, if the MLM entrainment closure includes the effects of cloud droplet sedimentation. To achieve this agreement, parameters in the MLM entrainment closure and the drizzle parameterization must be retuned to match the LES. This is because the LES advection scheme and microphysical parameterization significantly bias the entrainment rate and precipitation profile compared to observational best guesses. Before this modification, the MLM simulates more liquid water path and much more drizzle at a given droplet concentration than the LES and is more sensitive to droplet concentration, even undergoing a drizzle-induced boundary layer collapse at low droplet concentrations. After this modification, both models predict a comparable decrease of cloud liquid water path as droplet concentration increases, cancelling 30–50% of the Twomey effect for our case. The agreement breaks down at the lowest simulated droplet concentrations, for which the boundary layer in the LES is not well mixed. Our results highlight issues with both types of model. Potential LES biases due to inadequate resolution, subgrid mixing and parameterized microphysics must be carefully considered when trying to make a quantitative inference of the second indirect effect from an LES of a stratocumulustopped boundary layer. On the other hand, even slight internal decoupling of the boundary layer invalidates the central Correspondence to: C. S. Bretherton ([email protected]) assumption of an MLM, substantially limiting the range of conditions that MLM-predicted sensitivities to droplet concentration are meaningful.
منابع مشابه
LES vs. MLM sensitivity to Sc cloud droplet concentration
The sensitivity of stratocumulus-capped mixed layers to cloud droplet concentration: do LES and mixed-layer models agree? J. Uchida, C. S. Bretherton, and P. N. Blossey Department of Applied Mathematics, University of Washington, Seattle, Washington, USA Department of Atmospheric Science, University of Washington, Seattle, Washington, USA Received: 5 November 2009 – Accepted: 16 November 2009 –...
متن کاملMechanisms of Marine Low Cloud Sensitivity to Idealized Climate Perturbations: A Single- LES Exploration Extending the CGILS Cases
Climate change sensitivities of subtropical cloud-topped marine boundary layers are analyzed using large-eddy simulation (LES) of three CGILS cases of well-mixed stratocumulus, cumulus under stratocumulus, and shallow cumulus cloud regimes, respectively. For each case, a steadily forced control simulation on a small horizontally doublyperiodic domain is run 10-20 days into quasi-steady state. T...
متن کاملHow important is the vertical structure for the representation of aerosol impacts on the diurnal cycle of marine stratocumulus?
Large-Eddy Simulations (LES) are performed to examine the impact of hygroscopic aerosols on the diurnal cycle of marine stratocumulus clouds, under varying meteorological forcing conditions. When the cloud condensation nuclei concentration increase is sufficient to inhibit drizzle formation in the cloud layer, the precipitating and the nonprecipitating cloud layers exhibit contrasting evolution...
متن کاملOn the diurnal cycle and susceptibility to aerosol concentration in a stratocumulus-topped mixed layer
Mixed-layer theory is used to study the diurnal cycle of the stratocumulus-topped boundary layer and its susceptibility to perturbations in atmospheric aerosol concentration. Our results show that the diurnal evolution of cloud thickness is sensitive to the entrainment efficiency. For high entrainment efficiencies, the cloud base tends to descend at a faster rate than the cloud top; this differ...
متن کاملCloud droplet sedimentation, entrainment efficiency, and subtropical stratocumulus albedo
[1] The effect of cloud droplet sedimentation on the entrainment rate and liquid water path of a nocturnal nondrizzling stratocumulus layer is examined using largeeddy simulations (LES) with bulk microphysics. In agreement with a prior study by Ackerman et al. (2004), sedimentation is found to decrease entrainment rate and thereby increase liquid water path. They suggested this is due to reduct...
متن کامل